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ABSTRACT

The problem of reliability characteristics sensitivity to the shapes of some
input distributions is considered.
A short review of the latest investigations on this direction is proposed.
More detailed the heterogeneous double redundant hot standby renewable
reliability system is considered.
Time dependent, stationary and quasi-stationary characteristics for such
systems are calculated.
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Introduction and Motivation

Stability of different systems characteristics to the changes in initial states or
exterior factors are the key problems in all natural sciences. For stochastic
systems stability often means insensitivity or low sensitivity of their output
characteristics to the shapes o f some input distributions.
B. Sevast’yanov (1957) [1] shown the insensitivity of the lost probability in
Erlang’s formulas on the shape of service time.
I.Kovalenko (1976) in [2] shown that the necessary and sufficient conditions
for insensitivity of stationary reliability characteristics of redundant renewable
system with exponential life time and general repair time distributions of its
components to the shape of the latter consist in sufficient amount of
repairing facilities.
The sufficiency of this condition for the case of general life and repair time
distributions has been found by V.Rykov (2013) in [3]. However, in the case
of limited possibilities for restoration these results do not hold [4].
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In series of work of B.V. Gnedenko (1964), A.D. Solov’ev (1970) [5, 6, 7] it
was shown that under “quick” restoration the reliability function of a cold
standby double redundant heterogeneous system tends to the exponential one
for any life and repair time distributions of its elements.
This result also means the asymptotical insensitivity of the reliability
characteristics of such system to the shapes of their elements life and repair
times distributions.
In the papers [8, 9, 10] the problem of systems’ steady state reliability
characteristics sensitivity to the shape of life and repair time distributions of
their components for the same type of systems has been considered, for the
case, when one of the input distributions (either of life or repair time lengths)
is exponential.
For these models explicit expressions for stationary probabilities have been
obtained which show their evident dependence on the non-exponential
distributions in the form of their Laplace-Stiltjes transforms.
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The problem of the convergence rate in the paper of V.V. Kalashnikov (1997)
[14] has been considered, where the evaluation of the convergence rate has
been done in terms of moments of appropriate distributions.
The numerical investigation and simulation results, given in [11, 12, 13]
demonstrate enough quick appearance of practical insensitivity of the time
dependent as well as stationary reliability characteristics to the shapes of life
and repair time distributions with fixed their mean values.
In this presentation the previous results review will be done and they will be
extended for the case of heterogeneous double redundant standby renewable
systems.
The talk ends with conclusion and some problems description.
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The Problem setting and notations

Consider a heterogeneous hot double redundant repairable reliability system.
СЮДА БЫ РИСУНОЧЕК !!!!!
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Life times of components are exponentially distributed r.v. with parameters
α1 and α2.
The repair times of components have absolute continuous distributions with
c.d.f. Bk(x) (k = 1, 2) and p.d.f. bk(x) (k = 1, 2).
All life and repair times are independent.
The “up” (working) states of each component will be marked by 0 and the
“down” (failed) state by 1.

Under considered assumptions the system state space can be represented as
E = {0, 1, 2, 3}, which means:

0 — both components are working,
1 — the first component is repaired, and the second one is working,
2 — the second component is repaired, and the first one is working,
3 — both components are in down states, system is failed and repaired.
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For the system behavior description introduce a random process
J = {J(t), t ≥ 0} with values into system set of states E :

J(t) = i , if in the time t the system is in the state i ∈ E .

At that the system states subset E0 = {0, 1, 2} represents its working (up) states
of the system, and the subset E1 = {3} represents the system failure (down)
state. Denote also by

α = α1 + α2 the summary intensity of the system failure;
bk =

∫∞
0 (1− Bk(x))dx k-th element repair time expectations;

βk(x) = (1− Bk(x))−1bk(x) k-th element conditional repair intensity given
elapsed repair time is x ;
b̃k(s) =

∫∞
0 e−sxbk(x)dx Laplace transform (LT) of the k-th element repair

time distribution.
T = inf{t : J(t) ∈ E1} the system life time
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In this paper we are interesting in study of
the reliability function

R(t) = P{T > t}

or system life time distribution F (t) = 1− R(t);
the system steady-state probabilities (s.s.p.)

πj = lim
t→∞

P{J(t) = j};

however because any system does not exist infinitely long for practice is more
interesting characteristic is so called quasi stationary probabilities (q.s.p.)

π̄j = lim
t→∞

P{J(t) = j |t ≤ T}.
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The reliability function calculation

For the system investigation the Markovization method is used. To realize it
consider the two-dimensional Markov process Z = {Z (t), t ≥ 0)}, with
Z (t) = (J(t),X (t)) where

J(t) represents the system state, and
X (t) is an additional variable, which means the elapsed repair time of J(t)-th
component at time t.

The process phase space equals to E = {0, (1, x), (2, x), 3}, which mean:
0 – both components are working,
(i , x) – the i-th component is failed and repairing, and its elapsed repair time
equal to x , while another one is working,
3 – both components are failed, and therefore the system is failed.

Appropriate probabilities are denoted by

π0(t), π1(t; x), π2(t; x), π3(t).
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The state transition graph of the system is represented in figure 1.
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Figure 1: Absorbing system transition graph

V. Rykov (Moscow, Russia) e-mail vladimir_rykov@mail.ru ACMPT - 2017 October 7, 2017 12 / 58



By usual method the following Kolmogorov forward system of partial differential
equations for these probabilities can be obtained,

d

dt
π0(t) = −απ0(t) +

∫ t

0
π1(t, u)β1(u)du +

∫ t

0
π2(t, u)β1(u)du,(

∂

∂t
+

∂

∂x

)
π1(t; x) = −(α2 + β1(x))π1(t; x),(

∂

∂t
+

∂

∂x

)
π2(t; x) = −(α1 + β2(x))π2(t; x),

d

dt
π3(t) = α1

∫ t

0
π2(t; u)du + α2

∫ t

0
π1(t; u)du. (1)

jointly with the initial π0(0) = 1 and boundary conditions

π1(t, 0) = α1π0(t), π2(t, 0) = α2π0(t). (2)
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Theorem

The LT π̃(s) and R̃(s) of the πi (t) and the reliability function R(t) are

π̃0(s) =
1

s + ψ(s)
,

π̃1(s) = α1
1− b̃1(s + α2)

(s + α2)(s + ψ(s))
,

π̃2(s) = α2
1− b̃2(s + α1)

(s + α1)(s + ψ(s))
,

π̃3(s) =
α1α2(φ1(s) + φ2(s)

s(s + α1)(s + α2)(s + ψ(s))
,

R̃(s) =
(s + α1)(s + α2) + α1φ1(s) + α2φ2(s)

(s + α1)(s + α2)(s + ψ(s))
, (3)

where the following notations are used

φi (s) = (s + αi )(1− b̃i (s + αi∗)), (i = 1, 2),

ψ(s) = α1(1− b̃1(s + α2)) + α2(1− b̃2(s + α1)).

with i∗ = 2 for i = 1, and i∗ = 1 for i = 2.
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Proof

The proof is not too complicated, but enough long. It uses the method of
characteristic for partial differential equations solution and some calculations
based on Laplace transform. It’ll be done in the full paper for conference journal.
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Stationary probabilities

For the system stationary regime study we need to determine the system behavior
after its failure. There are at least two possibilities:

full repair, when after the system failure the renewal of whole system begins
that demand some random time with, say c.d.f. B3(t), and after this time
the system goes to the state 0;
partial repair, when after failure the system prolong to work in the same
regime, i.e. the repaired element prolong to be repaired and after its renewal
the system goes to the state 1 or 2 dependently on what type of component
is repaired in state 3. Therefore we need to divide this state into two states
(3, 1) which means that both elements fail and the first one is repaired, and
(3, 2) which means that both elements fail and the second one is repaired.
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Partial repair

In case of partial repair (note that the distributions to the first failure and between
failures are different in this case) the transition graph represented in the picture 2.

0

β (x)

(1, x)

(2, x)

α1

α2

2

β (x)1

α1

α2 ((3,1), x)

((3,2), x)

β (x)1

β (x)2

Figure 2: Transition graph of the system with an absorbing state
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To calculate steady-state probabilities consider two-dimensional Markov process
Z = {Z (t), t ≥ 0)}, with Z (t) = (J(t),X (t)) where

J(t) represents the system state, and
X (t) is an additional variable, which means the elapsed time of the element
under recovery at time t.

The process phase space equals to E = {0, (1, x), (2, x), 3}, which mean:
0 – both components of system are working,
(i , x) – the i-th component (i=1, 2) is failed and repaired, and its elapsed
repair time equal to x , and the other one is working,
((3, i), x) – both elements are failed, and i-th one is repaired with elapsed
time equal x .

Appropriate probabilities are denoted by

π0(t), π1(t; x), π2(t; x), π(3,1)(t; x), π(3,2)(t; x).
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The following Kolmogorov forward system of equations holds

d

dt
π0(t) = −απ0(t) +

t∫
0

π1(t, u)β1(u)du +

t∫
0

π2(t, u)β2(u)du,

(
∂

∂t
+

∂

∂x

)
πi (t; x) = −(αi∗ + βi (x))π(t; x), (i = 1, 2)(

∂

∂t
+

∂

∂x

)
π(3,i)(t; x) = −βi (x)π(3,i)(t; x) + αi∗πi (t; x), (i = 1, 2) (4)

with the initial condition π0(0) = 0, and the boundary conditions of the form

π1(t; 0) = α1π0(t) +

t∫
0

π(3,2)(t; u)β2(u)du,

π2(t; 0) = α2π0(t) +

t∫
0

π(3,1)(t; u)β1(u)du. (5)

Here and later i∗ = 2 for i = 1 and vice verse.
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Because the state 0 represents a positive atom for the process Z , the limiting
probabilities exist

π0 = lim
t→∞

π0(t), πi (x) = lim
t→∞

πi (t; x), (i = 1, 2, (3, 1), (3, 2)).

and satisfy to the system of balance equations

απ0 =

∞∫
0

π1(u)β1(u)du +

∞∫
0

π2(u)β2(u)du,

d

dx
πi (x) = −(αi∗ + βi (x))πi (x), (i = 1, 2)

d

dx
π(3,i)(x) = −βi (x)π(3,i)(x) + αi∗πi (x), (i = 1, 2). (6)

with appropriate boundary conditions

πi (0) = α1π0 +

∞∫
0

π(3,i∗)(u)βi∗(u)du, (i = 1, 2) (7)
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Theorem

The s.s.p. of the system with partial repair has the form

πi (x) = Cie
−αi∗x(1− Bi (x)), (i = 1, 2)

π(3,i)(x) = Ci (1− e−αi∗x)(1− Bi (x)), (i = 1, 2) (8)

where
Ci =

∆i

∆
π0, (i = 1, 2), (9)

with

∆ = 1− (1− b̃1(α2))(1− b̃2(α1)),

∆i = αi − αi∗(1− b̃i∗(αi )) (i = 1, 2),

and
π0 =

∆

∆ + ∆1b1 + ∆2b2
(10)
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Proof

The proof of the theorem uses the usual method of the variables division for the
first two equations, and then the method of the constant variation for the two
next.

Application of the boundary condition allows to get the result.

The detailed proof in the full paper will be done.

The above formulas demonstrate an evident dependence of the system s.s.p. of
the shapes of elements repair time distributions.
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Corollary

Macro-states s.s.p. are

π1 = C1
1− b̃1(α2)

α2
,

π2 = C2
1− b̃2(α1)

α1
,

π(3,1) = C1b1
1− b̃1(α2)

α2
,

π(3,2) = C2b2
1− b̃2(α1)

α1
. (11)

with the same values of C1, C2, ∆1, ∆2, ∆ and π0.
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Remark

With the help of normalizing condition one can get some simple connection
between constants C1, C2. Really dividing representation for π0 into sum of two
summands and summing the expression for stationary probabilities one can get

1 = π0 + π1 + π2 + π(3,1) + π(3,2) =

C1

(
b̃1(α2)

α1
+

1− b̃1(α2)

α2
+ b1 −

1− b̃1(α2)

α2

)
+

C2

(
b̃2(α1)

α2
+

1− b̃2(α1)

α1
+ b2 −

1− b̃2(α1)

α1

)

C1

(
b̃1(α2)

α2
+ b1

)
+ C2

(
b̃2(α1)

α1
+ b2

)
. (12)
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Corollary

Using last expression one can get appropriate formulas for s.s.p. of homogeneous
system, which coincide with those obtained before, see for example [8, 10].

Denote for homogeneous system the macro-state probabilities by π̄0, π̄1, π̄2 and by
ρ = αb.

Corollary

The SSP for homogeneous system equals

π̄0 =
b̃(α))

ρ+ b̃(α)
,

π̄1 =
1− b̃(α))

ρ+ b̃(α)
,

π̄2 =
ρ+ 1− b̃(α))

ρ+ b̃(α)
.
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Proof

In homogeneous case the expression (12) with notation ρ = αb gives the following
result

C1 + C2 =
α

b̃(α) + ρ
.

Thus by summing the macro-states probabilities with the above notations
π̄0, π̄1, π̄2 and π̄0 = π0, π̄1 = π1 + π2, π̄2 = π(3,1) + π(3,2) it gives

π̄0 = (C1 + C2)
b̃(α)

α
=

b̃(α))

ρ+ b̃(α)
,

π̄1 = π1 + π2 = (C1 + C2)
1− b̃1(α)

α
=

1− b̃(α))

ρ+ b̃(α)
,

π̄2 = π(3,1) + π(3,2) = (C1 + C2)

(
b − 1− b̃1(α)

α

)
=
ρ+ 1− b̃(α))

ρ+ b̃(α)

that proof the Corollary.
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Full repair

In the case of system full repair after its failure the system behavior can be
described by the process J = {J(t), t ≥ 0} with the state space E = {0, 1, 2, 3},
which means:

0 — both components are in “up” states,
i (i = 1, 2) — the i-th component is repaired and the other is working,
3 — both components are in down states, system is failed.

In this case the system pass from the state 3 to the state 0 with some absolutely
continuous c.d.f, say B3(x), and p.d.f. b3(x) and transition intensity (conditional
p.d.f. given elapsed summary system repair time equals to x) equals β3(x).
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For the system investigation introduce the two-dimensional Markov process

Z = {J(t), X (t), t ≥ 0}

under phase space

E = {0, 1, 2, 3} × R+ = {0, (1, x), (2, x), 3},

which means:
0 – both elements are working,
(i , x) (i = 1, 2) – the i-th component is repaired and its elapsed repair time
equal to x , the other one is working,
(3, x) – both elements are failed, and the system elapsed repair time equal to
x .

Appropriate probabilities are denoted by

π0(t), π1(t; x), π2(t; x), π3(t; x).
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The transition graph of the process represented at the picture below.
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Figure 3: Transition graph of the system with an absorbing state

V. Rykov (Moscow, Russia) e-mail vladimir_rykov@mail.ru ACMPT - 2017 October 7, 2017 29 / 58



The following Kolmogorov forward system of differential equations holds

d

dt
π0(t) = −απ0(t) +

∫ t

0
π1(t, u)β1(u)du +

∫ t

0
π2(t, u)β2(u)du +

+

t∫
0

β3(u)π3(u)du,

(
∂

∂t
+

∂

∂x

)
πi (t; x) = −(αi∗ + βi (x))πi (t; x), (i = 1, 2)(

∂

∂t
+

∂

∂x

)
π3(t; x) = −β3π3(t; x). (13)

with the initial π0(t) = δ(t) and boundary conditions of the form

πi (t, 0) = αiπ0(t), (i = 1, 2)

π3(t, 0) = α1

t∫
0

π2(t, u)du + α2

t∫
0

π1(t, u)du. (14)
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The process Z is a positive recurrent one (the state 0 is its positive atom) and
therefore it has the limiting under t →∞ probabilities, which coincide with s.s.p.

π0 = lim
t→∞

π0(t), πi (x) = lim
t→∞

πi (t; x) (i ∈ {1, 2, 3})

for which the system of balance equations holds

απ0 =

t∫
0

π1(t, u)β1(u)du +

t∫
0

π2(t, u)β1(u)du +

t∫
0

β3(u)π3(u)du,

d

dx
πi (x) = −(αi∗ + βi (x))πi (x), (i = 1, 2)

d

dx
π3(x) = −β3(x)π3(t; x) (15)

with the boundary conditions of the form

πi (0) = αiπ0, (i = 1, 2),

π3(0) = α1

∞∫
0

π2(u)du + α2

∞∫
0

π1(t, u)du. (16)
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Theorem

The s.s.p. for the system under full repair has the form

πi (x) = αie
−αi∗x(1− B1(x))π0, (i = 1, 2)

π3(x) = [α1(1− b̃1(α2)) + α2(1− b̃1(α2))](1− B3(x))π0. (17)

where π0 is given by

π0 =

[
1 + (1− b̃1(α2))

(
α1

α2
+ α1b3

)
+ (1− b̃2(α1))

(
α2

α1
+ α2b3

)]−1

, (18)

with b3 = E[B3] =
∫∞
0 (1− B3(x))dx ,
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Corollary

Appropriate stationary macro-state s.s.p. are

π1 =
α1

α2
(1− b̃1(α2))π0,

π2 =
α2

α1
(1− b̃2(α1))π0,

π3 = [α1(1− b̃1(α2)) + α2(1− b̃1(α2))]b3π0,

with the same value of π0.
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Proof

Solutions of the last three equations of the system (15) are

π1(x) = C1e
−α2x(1− B1(x)),

π2(x) = C2e
−α1x(1− B2(x)),

π3(x) = C3(1− B3(x)).

Using boundary conditions (16) to find unknown constants Ci gives

C1 = α1π0, C2 = α2π0, C3 = [α1(1− b̃1(α2)) + α2(1− b̃2(α1))]π0.

Using normalizing conditions in order to find probability π0 gives

1 = π0 + π1 + π2 + π3 =

=

[
1 + α1

1− b̃1(α2)

α2
+ α2

1− b̃2(α1)

α1
+

+ (α1(1− b̃1(α2)) + α2(1− b̃2(α1)))b3

]
π0,

from which the formula (18) follows that proves the theorem.
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Remark

For homogeneous system, when αi = α, bi (x) = b(x) (i = 1, 2), the last
expression takes the form

π0 =
1

1 + 2(1− b̃(α))(1 + αb3)
,

which coincides with previously found.
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Quasi-stationary probabilities

Studying the system behavior at its life cycle (during its life time) instead of its
stationary probabilities (that all equals to 0 or 1) more interesting are so called
quasi-stationary probability (q.s.p.) which is defined as limits of conditional
probabilities to be in any state given the system is not file yet,

π̂i = lim
t→∞

P{J(t) = i |t ≤ T} =

= lim
t→∞

P{J(t) = i , t ≤ T}
P{t ≤ T}

= lim
t→∞

πi (t)

R(t)
. (19)
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In order to calculate these limits it is possible to use LT of appropriate functions,
which has been given in the section 3 by formulas (3).

π̃0(s) =
1

s + ψ(s)
,

π̃1(s) = α1
1− b̃1(s + α2)

(s + α2)(s + ψ(s))
,

π̃2(s) = α2
1− b̃2(s + α1)

(s + α1)(s + ψ(s))
,

π̃3(s) =
α1α2(φ1(s) + φ2(s)

s(s + α1)(s + α2)(s + ψ(s))
,

R̃(s) =
(s + α1)(s + α2) + α1φ1(s) + α2φ2(s)

(s + α1)(s + α2)(s + ψ(s))
,

where the following notations are used

φi (s) = (s + αi )(1− b̃i (s + αi∗)), (i = 1, 2),

ψ(s) = α1(1− b̃1(s + α2)) + α2(1− b̃2(s + α1)).

V. Rykov (Moscow, Russia) e-mail vladimir_rykov@mail.ru ACMPT - 2017 October 7, 2017 37 / 58



Theorem

The q.s.p. of the model under consideration have the form

π̂i = lim
t→∞

πi (t)

R(t)
=

Ai

AR
, (20)

where values Ai , AR are residuals of the functions π̃i (s) and R̃(s) in the point −γ,
which is the maximal root of the equation

ψ(s) = −s. (21)
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Proof

For the q.s.p. calculation we use its LT directly.
Note that the behavior of the functions πi (t) and R(t) for t →∞ depends
on the roots of their LT denominators.
Note now that the denominators of these functions LT are almost the same,
and the behavior of the functions πi (t) and R(t) for t →∞ depends mostly
on the maximal (with minimal absolute value) root.
The denominator of the function R̃(s) have only negative roots:
s1 = −α1, s2 = −α2 and the roots of the equation

ψ(s) = −s. (22)
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For simplicity consider firstly the homogeneous case, when αi = α, bi (t) = b(t).
In this case the function ψ(x) has a form

ψ(s) = 2α(1− b̃(s + α)).

We will consider the solution of this equation for real values of s. For these values
the function b̃(·) is quite monotone one (see [16], vol 2) and therefore is convex,
thus the function 1− b̃i (·) is concave. It shows that the equation (22) has a
unique root, denoted by −γ (see fig. 1), which satisfies to the inequality

−α < −γ < 0.
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-α -γ

2α(1-b(α))

s

ψ(s)

0

˜

Figure 4: Root of the equation ψ(s) = 2α(1 − b̃(s + α)).
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This argumentations show that the functions πi (t) and R(t) have the forms

π0(t) = A0e
−γt(1 + ε0(t)),

π(1,2) ≡ π1(t) + π2(t) = A(1,2)e
−γt(1 + ε(1,2)(t)),

π3(t) = A3e
−γt(1 + ε3(t)),

R(t) = ARe
−γt(1 + εR(t)),

where functions εi (t) (i = 1, (1, 2), 3) and εR(t) are infinitely small.

V. Rykov (Moscow, Russia) e-mail vladimir_rykov@mail.ru ACMPT - 2017 October 7, 2017 42 / 58



These representations allow to calculate quasi-stationary probabilities (19) as
follows

π̂i = lim
t→∞

πi (t)

R(t)
= lim

s→−γ

π̃i (s)

R̃(s)
=

Ai

AR
, (23)

where values Ai , AR are residuals of the functions π̃i (s) and R̃(s) in the point −γ.
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An Example

Thus for example for homogeneous case one can get

π̂0 = lim
s→−γ

π̃0(s)

R̃(s)
=

α− γ
α− γ + 2α(1− b̃(α− γ))

,

π̂(1,2) = π̂1 + π̂2 =
2α(1− b̃(α− γ))

α− γ + 2α(1− b̃(α− γ))
.

Moreover for the Markov case, when b(t) = βe−βt these formulas after
substitution of appropriate expressions for b̃(s + α) = β(s + α + β)−1 coincide
with appropriate expressions, obtained with the usual Markov approach

π̂0 =
α + β − γ
3α + β − γ

,

π̂1 + π̂2 =
2α

3α + β − γ
.
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For investigation of the general heterogeneous case suppose for a certainty that
α1 < α2.

In this case the functions b̃i (s + αi∗) are also convex, and therefore the functions

1− b̃i (s + αi∗)

as well as their linear combinations are concave and therefore the equation (22)
has a unique root, which is also will be denoted as −γ.

The procedure of the quasi-stationary probabilities is the same as in the above
special case.
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Sensitivity analysis

All above results show the evident sensitivity of the considered systems
characteristics to the shape of their components repair time distribution.

However, under rare failures these sensitivity became negligible for all
characteristics of the system under consideration. For reliability function it is
shown in another talk at this Conference [15].

Below the asymptotic insensitivity of s.s.p. and q.s.p. of considered systems to
the shape of their components repair time distribution under rare failures will be
shown.

V. Rykov (Moscow, Russia) e-mail vladimir_rykov@mail.ru ACMPT - 2017 October 7, 2017 46 / 58



Partial repair

Remind the s.s.p. of the system under partial failures that is represented by
formulas (11).

π1 = C1
1− b̃1(α2)

α2
,

π2 = C2
1− b̃2(α1)

α1
,

π(3,1) = C1b1
1− b̃1(α2)

α2
,

π(3,2) = C2b2
1− b̃2(α1)

α1
. (24)

with the values of C1, C2, ∆1, ∆2, ∆ and π0 given by Corollary 23.

With the help of Tailor expansion for max{α1, α2} → 0 the following theorem can
be proved, where for the second moment of the repair time the following
additional notations are used

b
(2)
i =

∞∫
0

x2bi (x)dx (i = 1, 2).V. Rykov (Moscow, Russia) e-mail vladimir_rykov@mail.ru ACMPT - 2017 October 7, 2017 47 / 58



Theorem

Under the rare components’ failures, when max{α1, α2} → 0 with the notation

b
(2)
i =

∞∫
0

x2bi (x)dx (i = 1, 2).

for the second moment of the repair time the following formulas the s.s.p. of the
considered system with partial repair take place

π0 ≈ 1− ρ1ρ2

1 + ρ1 + ρ2 − 3ρ1ρ2
,

πi ≈
ρi (1− ρi∗)

1 + ρ1 + ρ2 − 3ρ1ρ2

(
1−

b
(2)
i ρi∗

2b1b2

)
(i = 1, 2)

π(3,i) ≈ ρ1ρ2(1− ρi∗)

1 + ρ1 + ρ2 − 3ρ1ρ2

b
(2)
i

2b1b2
, (i = 1, 2) (25)

that show their asymptotic insensitivity on the shapes of their components’ repair
distributions.
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Full repair

Analogous to the previous case the s.s.p. of the system under full system repair
after its failure represented by formulas (??). Tailor expansion of these results up
to the second order of the value max{α1, α2} → 0 allows to prove following
theorem, which show asymptotic insensitivity of the s.s.p. on the shapes of their
components’ repair distributions, but only on their mean values and the
components failure intensities.
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Theorem

Under the rare components’ failures the s.s.p. of the considered system with full
repair take the form

π0 ≈ [1 + ρ1(1 + α2b3) + ρ2(1 + α1b3)]−1
,

π1 ≈ ρ1

1 + ρ1(1 + α2b3) + ρ2(1 + α1b3)
,

π2 ≈ ρ2

1 + ρ1(1 + α2b3) + ρ2(1 + α1b3)
,

π3 ≈ (ρ1α2 + ρ2α1)b3

1 + ρ1(1 + α2b3) + ρ2(1 + α1b3)
. (26)
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Quasi-stationary probabilities

For quasi-stationary probabilities taking into account that γ < min{α1, α2} with
the help of Tailor expansion of the formulas (??) in neighbor of the points αi − γ
when α = max{α1, α2} → 0 one can get the following theorem
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Theorem

Under the rare components’ failures the q.s.p. of the considered system with full
repair take the form

π0 ≈ (1 + ρ1 + ρ2)−1,

π1 ≈ ρ1

1 + ρ1 + ρ2
,

π2 ≈ ρ2

1 + ρ1 + ρ2
. (27)
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Conclusion

Markovization method is used for heterogeneous double redundant hot
standby renewable reliability system analysis.
The time dependent, stationary and quasi-stationary probability distributions
for the system are calculated.
It was shown that under rare failures the reliability characteristics
asymptotically insensitive to the shape of the components repair time
distributions up to their two first moments.
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