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Let X, X1, X2, . . . be i.i.d. random variables,

Sn = X1 + · · ·+Xn, n ≥ 1.

The sequence {Sn} is usually called a random walk.

Boundary crossing problems involve the study of distributions
associated with reaching (or not reaching) the boundary of
certain set for random walk trajectories.

Given a Borel set B ⊂ R, introduce the first hitting time

N = min{n ≥ 1 : Sn ∈ B}.

Put N =∞ if Sn ∈ B = R \B for all n.
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We are interesting in the joint distribution of the pair (N, SN)
in the cases: B = [b,∞), B = (−∞, a] (one-sided problems,
a < 0, b > 0), B = (−∞, a] ∪ [b,∞) (two-sided problem).

The distribution of the sojourn time above a level and the
distribution of the number of crossings of a strip by sample
paths of a random walk are of our interest as well.

We will demonstrate an analytical method to study these
distributions.
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Introduce the double Laplace–Stieltjes transform (LST)

Q(z, λ) = E
(
zNeλSN ; N <∞

)
=
∞∑
n=1

zn
∫
B

eλyP(N = n, SN ∈ dy),

and, in addition, the functions ϕ(λ) = EeλX and

Q0(z, λ) =
∞∑
n=1

znE
(
eλSn ; N > n

)
.

At the first step, our goal is to find Q(z, λ).

V. I. Lotov
Factorization method in boundary crossing problems for random walks
4 / 25



The following assertion (the main identity) is known (W.Feller,
Vol.2, Ch.18).

Theorem

For |z| < 1 and Reλ = 0 the following identity holds:(
1− zϕ(λ)

)(
1 +Q0(z, λ)

)
= 1−Q(z, λ).

So we have one equation containing two unknown functions.
Nevertheless, we can solve it and find the functions Q(zλ) and
Q0(zλ) in one-sided and two-sided problems, but, to this end,
we need factorization of the function 1− zϕ(λ).
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It can be easily shown that, for |z| < 1 and Reλ = 0

1− zϕ(λ) = exp{log(1− zϕ(λ))} = R−(z, λ)R+(z, λ)

(Wiener–Hopf factorization), where

R−(z, λ) = exp

{
−
∞∑
n=1

zn

n
E
(

exp{λSn};Sn ≤ 0
)}

,

R+(z, λ) = exp

{
−
∞∑
n=1

zn

n
E
(

exp{λSn};Sn > 0
)}

.

The function R+(z, λ) is analytic with respect to λ in the left
half-plane Reλ < 0, continuous at the border, and it is
bounded and does not equal zero when Reλ ≤ 0. The
function R−(z, λ) has similar properties in the right half-plane.
The components of a factorization with the above properties
are defined uniquely up to a constant factor.
There exist some other expressions for R±(z, λ).
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Denote S(A) the set of functions g taking the form

g(λ) =

∫
A

eλydG(y), where

∫
A

|dG(y)| <∞, Reλ = 0.

We notice, in addition, that the functions R+(z, λ),
R−1+ (z, λ) belong to S

(
[0,∞)

)
, and the functions R−(z, λ),

R−1− (z, λ) belong to S
(
(−∞, 0]

)
.

Given a function g ∈ S(R), we define

[g(λ)]A =

∫
A

eλydG(y)

for each Borel set A.
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As an example, we now show how the main identity can be
solved in one-sided and two-sided problems.

Theorem

For |z| < 1 and Reλ = 0, we have

Q(z, λ) = R+(z, λ)
[
R−1+ (z, λ)

][b,∞)
, if B = [b,∞), b > 0,

Q(z, λ) = R−(z, λ)
[
R−1− (z, λ)

](−∞,a]
if B = (−∞, a], a < 0.

Proof. Let B = [b,∞), b > 0. Using factorization, we rewrite
the main identity:

R−(z, λ)R+(z, λ)
(
1 +Q0(z, λ)

)
= 1−Q(z, λ),
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and then redistribute summands between left-hand and
right-hand sides:

R−(z, λ)Q0(z, λ) = −R−(z, λ) +R−1+ (z, λ)
(
1−Q(z, λ)

)
.

The left-hand side of this relation belongs to S
(
(−∞, b)

)
, so

the same is true for the right-hand side, i.e.[
−R−(z, λ) +R−1+ (z, λ)

(
1−Q(z, λ)

)][b,∞)

≡ 0.

Clearly,
[
R−(z, λ)

][b,∞) ≡ 0. Further, under our condition,
Q(z, λ) ∈ S([b,∞)), so R−1+ (z, λ)Q(z, λ) ∈ S

(
[b,∞)

)
.

Hence, [
R−1+ (z, λ)

(
1−Q(z, λ)

)][b,∞)

=
[
R−1+ (z, λ)

][b,∞)

−R−1+ (z, λ)Q(z, λ) = 0.

A symmetric reasoning establishes the result for
B = (−∞, a], a < 0. The theorem is proved.
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Next we introduce operators L±. Given a function g ∈ S(R),
we put

(L−g)(z, λ) = R−(z, λ)
[
R−1− (z, λ)g(λ)

](−∞,a]
,

(L+g)(z, λ) = R+(z, λ)
[
R−1+ (z, λ)g(λ)

][b,∞)
.

Here |z| < 1, Reλ = 0, the function g may also depend on z.

Put e(λ) = e(z, λ) ≡ 1. In the new notations, the formulas
obtained above can be rewritten in the following way:

Q(z, λ) = (L+e)(z, λ) if B = [b,∞),

Q(z, λ) = (L−e)(z, λ) if B = (−∞, a].
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It turns out that the double LST in the two-sided problem can
be also expressed via operators L±.
Really, put B = (−∞, a] ∪ [b,∞) then

N = min
{
n ≥ 1 : Sn /∈ (a, b)

}
, a < 0, b > 0.

Let

Q1(z, λ) = E
(
zNeλSN ; SN ≤ a

)
, Q2(z, λ) = E

(
zNeλSN ; SN ≥ b

)
.

Then Q(z, λ = Q1(z, λ) +Q2(z, λ).

In the same way as in Theorem 2, from the main identity we
obtain

Q2(z, λ) = (L+e)(z, λ)− (L+Q1)(z, λ), (1)

Q1(z, λ) = (L−e)(z, λ)− (L−Q2)(z, λ).

Substituting the expression for Q1(z, λ) into (1) leads to the
identity

Q2(z, λ) = (L+e)(z, λ)− (L+L−e)(z, λ) + (L+L−Q2)(z, λ),

and, in a similar way, we arrive at the identity for Q1.
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Further, for a random walk with nonzero drift, consider the
random variable η equal to the number of upcrossings of the
strip with boundaries at the levels a < 0 and b > 0. It turns
out that, in this case,

P(η ≥ k) = lim
z→1

(
(L+L−)ke

)
(z, 0), k ≥ 1.

Thus, we see that, in many boundary crossing problems
connected with the achievement of a set with linear
boundaries, LST of the distributions under study are expressed
in terms of the operators L±. So, we need to clarify the
probabilistic meaning of these operators, as well as the
possibility of finding explicit expressions for them and
asymptotic representations.
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Discuss a probabilistic meaning.
First, it is not difficult to deduce from the main identity that

Q(z, λ) = 1−R+(z, λ) if B = (0,∞),

Q(z, λ) = 1−R−(z, λ) if B = (−∞, 0].

In both of these cases the function Q(z, λ) is a joint
distribution of the corresponding ladder epoch and ladder
height of the random walk. Thus, using factorization
components for finding the LST of distributions of boundary
functionals is not some technical trick. It means that the
desired distributions are expressed in terms of the distributions
of ladder epoch and ladder height, which is quite natural.
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Further, let τ ≥ 0 be an arbitrary stopping time, possibly
improper. At the event {τ <∞}, we define the random
variables

τ+(b) = inf{n ≥ τ : Sn ≥ b}, τ−(a) = inf{n ≥ τ : Sn ≤ a}.
Suppose that the double transform
f(z, λ) = E

(
zτ exp{λSτ}; τ <∞

)
is known. The problem is

to find the functions

f+(z, λ) = E
(
zτ+(b) exp{λSτ+(b)}; τ+(b) <∞

)
,

f−(z, λ) = E
(
zτ−(a) exp{λSτ−(a)}; τ−(a) <∞

)
.

The following assertion was obtained in Lotov’89.

Theorem

For |z| < 1 and Reλ = 0, the following relations hold:

f±(z, λ) = (L±f)(z, λ).
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The assertion of this theorem makes clear the probabilistic
meaning of all summands in the relations

Q2(z, λ) = (L+e)(z, λ)− (L+Q1)(z, λ),

Q1(z, λ) = (L−e)(z, λ)− (L−Q2)(z, λ).

We note in passing that, under the conditions of the theorem,
the distributions of jumps of a walk to the time τ and after it
may not coincide. This makes it possible to consider random
walks in which the distribution of jumps is changing at the
moment of passing certain boundaries.
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Next, we discuss the possibilities of calculating the
factorization components and operators L± in an explicit form.
The explicit form of the factorization components is known for
Gaussian random walks (Lotov’96) and for walks for which the
function E

(
exp{λX}; X < 0

)
or E

(
exp{λX}; X > 0

)
is

rational (Borovkov’72). For example, if the function

E
(

exp{λX}; X > 0
)

=
R(λ)

P (λ)
, where P (λ) =

k∏
i=1

(λ− pi),

is rational then

R+(z, λ) =
Λ(z, λ)

P (λ)
, R−(z, λ) =

(1− zϕ(λ))P (λ)

Λ(z, λ)
,

where Λ(z, λ) =
∏k

j=1(λ− λj(z)), and λ1(z), . . . , λk(z) are
zeros of the function 1− zϕ(λ) in the right half-plane (with
considering their multiplicities). In this case the calculation of
(L+g)(z, λ) becomes a simple exercise if the function
R−1+ (z, λ) is first decomposed on simple fractions.
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Let, in particular,

P(X ≥ t) = q exp{−αt}, t ≥ 0.

Denote λ(z) the only positive solution of the equation
1− zϕ(λ) = 0, then

R+(z, λ) =
λ− λ(z)

λ− α
,

and for each function g ∈ S((−∞, 0]) we have

(L+g)(z, λ) =
λ(z)− α
λ− α

g(λ(z))e(λ−λ(z))b.
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Let us now investigate the asymptotic behavior of the
operators L± as a→ −∞, b→∞.
We assume here:
(A) the distribution of X contains an absolutely continuous
component;
(C) the Cramér condition:

ϕ(λ) <∞ for − γ ≤ λ ≤ β, γ > 0, β > 0.

In addition, we assume that EeβX > 1 if EX < 0 and
Ee−γX > 1 if EX > 0.

Under these conditions, one can distinguish the principal terms
of the asymptotics for (L±g)(z, λ) as a→ −∞, b→∞ and
estimate the remainders that turn out to be exponentially
small in comparison with the principal terms (Lotov’99).
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The following representations hold uniformly in z ∈ (1− δ, 1)
for some δ > 0 and ε > 0:

(L+g)(z, λ) = vz(λ)e(λ−λ+(z))bg(λ+(z))
(
1 +O

(
e−εb

))
for each g ∈ S((−∞, 0]), and

(L−g)(z, λ) = uz(λ)e(λ−(z)−λ)ag(λ−(z))
(
1 +O

(
eεa
))

for each g ∈ S([0,∞)), where λ−(z) < 0 < λ+(z) are zeros of
the function 1− zϕ(λ) and

vz(λ) =
R+(z, λ)

(λ− λ+(z))R′+(z, λ+(z))
,

uz(λ) =
R−(z, λ)

(λ− λ−(z))R′−(z, λ−(z))
.

V. I. Lotov
Factorization method in boundary crossing problems for random walks
19 / 25



As a result, for B = [b,∞), b→∞, we find

E
(
zNeλSN ;SN ≥ b

)
= vz(λ)e(λ−λ+(z))b

(
1 +O

(
e−εb)

))
.

The remainder O
(
e−εb)

)
vanishes if

P(X ≥ t) = q exp{−αt}, t ≥ 0.

For the two-sided boundary crossing problem when
B = (−∞, a] ∪ [b,∞), we obtain, as a→ −∞, b→∞,

E
(
zNeλSN ;SN ≥ b

)
= vz(λ)e(λ−λ+(z))b 1− v2(z)µa(z)

1− v1(z)v2(z)µa+b(z)

(
1 +O

(
e−εb)

))
uniformly in z ∈ (1− δ, 1) for some δ > 0, where

v1(z) = vz(λ−(z)), v2(z) = uz(λ+(z)), µ(z) = eλ−(z)−λ+(z).
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The principle terms of these asymptotic representations can be
easily inverted with respect to spatial variable λ in both
one-sided and two-sided problems. Putting z = 1, we come to
the asymptotic representations for E

(
eλSN ;SN ≥ b

)
and then

we come to the exact and asymptotic formulas for the
distribution of overshoot in the one-sided boundary problem,
for EN and for the ruin probability P(SN ≥ b) in the
two-sided problem, for the distribution of the number of
crossings of the strip, etc.

We present here some results.
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Theorem

Suppose that conditions (A) and (C) hold, EX = 0 and
B = (−∞, a] ∪ [b,∞). Then, as b− a→∞, for each y ≥ 0,

P(SN ≥ b+ y) = A(y)
c1 − a

c2 + b− a
+O

(
e−ε(b+y)

)
,

where ε > 0, c1 and c2 are the constants expressed via first
two moments of ladder heights and EX2,

A(y) = E (χ− y; χ ≥ y)(Eχ)−1,

χ = Sν , ν = min{n ≥ 1 : Sn > 0}.

Similar relation holds for P(SN ≤ −a− y). Further applying
Wald’s identity ES2

N = EN EX2 leads to the asymptotic
expansion for EN up to O (eεa) +O

(
e−εb

)
.
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Theorem

Suppose that conditions (A) and (C) hold, µ1 = EX1 < 0,
and B = (−∞, a] ∪ [b,∞). Then, as a→ −∞, b→∞,

µ1EN = a−K1 + ((b− a+K1)K2 +K3)e
−qb

+O
(
e−(q+ε)b + e(q+ε)a)

)
where Ki are known constants, ϕ(q) = 1, q > 0, and ε > 0.
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The inversion of the principle terms in the time variable z is
more complicated. Nevertheless, the complete asymptotic
expansions for the probabilities P(N = n, SN ≥ x) were
obtained in one-sided boundary problem (A.A. Borovkov) and
in two-sided boundary problem (V.I. Lotov). In both cases
special modification of the saddle point method was applied
under condition that n→∞, b = b(n)→∞,
a = a(n)→ −∞, and b− a = o(n).

Factorization method for boundary crossing problems was first
derived for random walks (A.A. Borovkov, B.A. Rogozin, V.I.
Lotov, D.K. Kim), then for stochastic processes with
independent increments (B.A. Rogozin, V.R. Khodjibayev), for
Markov modulated random walks (E.L. Presman, V.I. Lotov).
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Thank you for attention!
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